Regional differences in osmotic behavior in brain during acute hyponatremia: an in vivo MRI-study of brain and skeletal muscle in pigs.
نویسندگان
چکیده
Brain edema is suggested to be the principal mechanism underlying the symptoms in acute hyponatremia. Identification of the mechanisms responsible for global and regional cerebral water homeostasis during hyponatremia is, therefore, of utmost importance. To examine the osmotic behavior of different brain regions and muscles, in vivo-determined water content (WC) was related to plasma sodium concentration ([Na(+)]) and brain/muscle electrolyte content. Acute hyponatremia was induced with desmopressin acetate and infusion of a 2.5% glucose solution in anesthetized pigs. WC in different brain regions and skeletal muscle was estimated in vivo from T(1) maps determined by magnetic resonance imaging (MRI). WC, expressed in gram water per 100 g dry weight, increased significantly in slices of the whole brain [342(SD = 14) to 363(SD = 21)] (6%), thalamus [277(SD = 13) to 311(SD = 24)] (12%) and white matter [219(SD = 7) to 225(SD = 5)] (3%). However, the WC increase in the whole brain and white mater WC was less than expected from perfect osmotic behavior, whereas in the thalamus, the water increase was as expected. Brain sodium content was significantly reduced. Muscle WC changed passively with plasma [Na(+)]. WC determined with deuterium dilution and tissue lyophilzation correlated well with MRI-determined WC. In conclusion, acute hyponatremia induces brain and muscle edema. In the brain as a whole and in the thalamus, regulatory volume decrease (RVD) is unlikely to occur. However, RVD may, in part, explain the observed lower WC in white matter. This may play a potential role in osmotic demyelination.
منابع مشابه
Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملStructural Findings in the Brain MRI of Patients with Acute Carbon Monoxide Poisoning
Background: Carbon monoxide (CO) poisoning may lead to hypoxic/anoxic injury and eventually ischemic encephalopathy. Magnetic resonance imaging (MRI) has a well-recognized role in assessment of the severity of brain damage caused by CO poisoning. In this study, we aimed to present and analyze the structural abnormalities in the brain MRI and especially in diffusion weighted MRI (DWI) images in ...
متن کاملبررسی مبتلایان حملات ایسکمیک گذرا از نظر وجود ضایعات حاد مغز در MRI با نمای Diffusion Weighted: مطالعه 50 بیمار
Background: Finding an acute brain lesion by diffusion-weighted (DW) MRI upon an episode of transient ischemic attack (TIA) is a predictor of imminent stroke in the near future. Therefore, exploring risk factors associated with lesions in DW-MRI of the brain is important in adopting an approach to TIA management. In the current study, we tried to determine the risk factors associated with lesio...
متن کاملChanges of Interleukin-6 and brain-derived neurotrophic factor levels following acute plyometric training among inactive men
ABSTRACT Introduction: Brain-Derived Neurotrophic Factor (BDNF) plays an important role in transmission of nerve impulses, plasticity, growth, and generally in the health of nervous system. Interleukin-6 (IL-6) is involved in immune and inflammatory responses and is produced by immune cells, fibroblasts, endothelial cells, skeletal muscles, and fat tissues. The aim of this study ...
متن کاملNeuregulins Response to Exercise: a Mini Review
The Neuregulin is a member of the epidermal growth factors (EGF) family of receptor kinases, was originally identified as the product of the transforming gene derived from chemically induced rat neuroblastoms. A variety of different protein isoforms are produced from single Neuregulin gene. Four distinct vertebrate gene encode Neuregulin, prosaically named NRG1, NRG2, NRG3, and NRG4. Most of bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 299 2 شماره
صفحات -
تاریخ انتشار 2010